INDIAN SCHOOL MUSCAT
SECOND PRE-BOARD EXAMINATION
APRIL 2021
SET C

CLASS XII

Marking Scheme - PHYSICS [THEORY]

Q.NO.	Answers	Marks (with split up)
1.	1:1	1
2.	Pole strength	1
3.	(i)Decreases (ii) increases	1
4.	n type OR p type	$1 / 2+1 / 2$
5.	$\begin{gathered} \hline \text { X rays } \\ \text { OR } \\ \frac{1}{\sqrt{\mu_{0} \epsilon_{0}}} \end{gathered}$	1
6.	1:1	1
7.	(i)Decreases (ii) increases OR 300 V	1
8.	Boron /Cadmium OR 1:2	1
9.	Helical path	$1 / 2+1 / 2$
10.	Metal A. Explanation	$1 / 2+1 / 2$
11.	a	
12.	d	
13.	d	
14.	a	
15.	(1) c (2) d (3) c (4) a (5) a	
16.	(1) b (2) a (3) b (4) a (5)d	
17.	(a) Photodiode used in reverse bias - reason (b) Distinguish between n type and p type - two points	1 $1 / 2+1 / 2$

\begin{tabular}{|c|c|c|}
\hline 18. \& \begin{tabular}{l}
Figure \\
Derivation- (Snell's law on the basis of Huygen's wave theory when light is travelling from a denser to a rarer medium.) \\
OR \\
(6) \\
(ii)
\end{tabular} \& 1
1

1

1

\hline 19 \& | b) i) The soft iron coil in a galvanometer will make the field radial. Also, it increases the strength of the magnetic field. |
| :--- |
| ii) Current sensitivity in the galvanometer is given by, $\frac{\theta}{1}=\frac{\text { NBA }}{k}$ Voltage sensitivity in the galvanometer is given by, $\frac{\theta}{V}=\frac{\theta}{\mathbb{R}}=\left(\frac{n B A}{k}\right) \cdot \frac{1}{R}$ |
| The above two equations imply that increasing the current sensitivity may not necessarily increase the voltage sensitivity. | \& 1

1

\hline 20. \& | a) When screen is moved away, D increases. As $\beta=\lambda D / d$ therefore width of the fringes increases. |
| :--- |
| (b) If s is size of the source and S is distant of source from the plane of the two slits, then for interference fringes to seen, the condition is $s / S<\lambda / D$ |
| As source slit is brought closer to double slit plane, S decreases, the interference pattern gets less and less sharp. When the source is too close, the fringe separation remains fixed. | \& 1

1

\hline 21. \& | Fig and showing current leads voltage in pure capacitive circuit $\text { If } \begin{array}{rlrl} & V & =V_{0} \sin \omega t \\ & q & =C V=C V_{0} \sin \omega t \\ \therefore \quad I & =\frac{d q}{d t}=\omega C V_{0} \cos \omega t \end{array}$ |
| :--- |
| or $\quad \mathrm{I}=\omega \mathrm{CV}_{0} \sin \left(\omega t+\frac{\pi}{2}\right)$ | \& $1 / 2$

$11 / 2$

\hline
\end{tabular}

22.	(a) Since the capacitors are connected in parallel we have, $\begin{aligned} & C=C_{1}+C_{2}+C_{3} \\ & =(2+3+4) \times 10^{-12} \\ & =9 \times 10^{-12}=9 \mathrm{pF} \end{aligned}$ $\begin{aligned} & \mathrm{q}_{1}=\mathrm{C}_{1} \mathrm{~V} \\ & =2 \times 10^{-12} \times 100 \\ & =2 \times 10^{-10} \mathrm{C} \\ & \mathrm{q}_{2}=\mathrm{C}_{2} \mathrm{~V} \\ & =3 \times 10^{-12} \times 100 \\ & =3 \times 10^{-10} \mathrm{C} \\ & \mathrm{q}_{3}=\mathrm{C}_{3} \mathrm{~V} \\ & =4 \times 10^{-12} \times 100 \end{aligned}$ (b) $=4 \times 10^{-10} \mathrm{C}$ OR (a) (b) Yes. Electric potential is zero at all points on equatorial line of electric dipole , while electric field is non zero. (or any correct example)	$1 / 2$ $11 / 2$
23.	Diagram of full wave rectifier i / p and o/p wave forms	$\begin{aligned} & 1 \\ & 1 / 2+1 / 2 \\ & \hline \end{aligned}$
24.	Three elements of earth's magnetic field At the poles definition - angle of dip (a) poles (b) equator	$1 / 21 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$
25.	$\text { Fringe width } \begin{aligned} \beta & =\lambda \mathrm{D} / \mathrm{d} \\ & =5 \times 10^{-4} \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	SECTION C	
26.	Definition - self inductance Derivation - energy stored in an inductor	
27.	Cells in parallel - expression for emf and resistance OR	3

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
(a) constantan and manganin are used for making standard resistors \\
(b) connections between resistors in a meter bridge made of thick copper strips \\
(c) the balance point is obtained near the middle of the bridge wire in meter bridge experiments
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1
\end{aligned}
\] \\
\hline 28. \& \begin{tabular}{l}
(i) metal Q \\
(ii)
\[
E=h \vartheta_{0}=6.63 \times 10^{-34} \times 6 \times 10^{14}=3.97 \times 10^{-19} \mathrm{~J}
\] \\
(iii)no change
\end{tabular} \& \begin{tabular}{l}
\[
1
\] \\
1 \\
1
\end{tabular} \\
\hline 29 \& \begin{tabular}{l}
 \\
Marking regions
\end{tabular} \& 2

1

\hline 30. \& At the distance of nearest approach

$$
\begin{aligned}
& P E=K E \\
& \frac{\mathrm{k}(\mathrm{ze})(2 \mathrm{e})}{\mathrm{r}_{0}}=4.5 \mathrm{MeV}=4.5 \times 10^{6} \times 1.6 \times 10^{-19} \mathrm{~J} \\
& \mathrm{r}_{0}=\frac{\mathrm{k}(\mathrm{ze})(2 \mathrm{e})}{4.5 \times 1.6 \times 10^{-13}} \\
& =\frac{9 \times 10^{9} \times(80) \times 2 \times\left(1.6 \times 10^{-19}\right)^{2}}{4.5 \times 1.6 \times 10^{-13}}=51.2 \times 10^{-15} \mathrm{~m} .
\end{aligned}
$$ \&

\hline 31. \& | a) Faraday's law of electromagnetic induction- statement and mathematical expression |
| :--- |
| (b)Deducing an expression for the emf induced in the rod with figure |
| (c) expression for current induced in it. |
| Or |
| working of a step up transformer, with diagram. |
| expression for the secondary to primary voltage in terms of the number of turns in the two coil. |
| any two sources of energy loss in a transformer | \& \[

$$
\begin{aligned}
& \hline 2 \\
& 2 \\
& 1 \\
& \\
& 11 / 2 \\
& 21 / 2 \\
& 1
\end{aligned}
$$
\]

\hline
\end{tabular}

