INDIAN SCHOOL MUSCAT

SECOND PRE-BOARD EXAMINATION

APRIL 2021

SET C

CLASS XII

Marking Scheme – PHYSICS [THEORY]

Q.NO.	Answers	Marks
		(with
		split
		up)
1.	1:1	1
2.	Pole strength	1
3.	(i)Decreases (ii) increases	1
4.	n type OR p type	1/2 + 1/2
5.	X rays	1
	OR	
	$\sqrt{\mu_0\epsilon_0}$	
6.	1:1	1
7.	(i)Decreases (ii) increases OR 300 V	1
8.	Boron / Cadmium OR 1:2	1
9.	Helical path	$\frac{1}{2} + \frac{1}{2}$
10.	Metal A. Explanation	$\frac{1}{2} + \frac{1}{2}$
11.	a	
12.	d	
13.	d	
14.	a	
15.	(1) c (2) d (3) c (4) a (5) a	
16.	(1) b (2) a (3) b (4) a (5) d	
17.	(a) Photodiode used in reverse bias – reason	1
	(b) Distinguish between n type and p type – two points	1/2 + 1/2

18.	Figure Derivation- (Snell's law on the basis of Huygen's wave theory when light is travelling from a denser to a rarer medium.)	1 1
	OR	
	(ii) (ii) Plane wavefront	1
19		
	 b) i) The soft iron coil in a galvanometer will make the field radial. Also, it increases the strength of the magnetic field. ii) Current sensitivity in the galvanometer is given by, θ/1 = NBA/k Voltage sensitivity in the galvanometer is given by, 	1
	$\frac{\theta}{V} = \frac{\theta}{IR} = \left(\frac{nBA}{R}\right) \cdot \frac{1}{R}$ The above two equations imply that increasing the current sensitivity may not necessarily increase the voltage sensitivity.	1
20.	 a) When screen is moved away, D increases. As β=λD/d therefore width of the fringes increases. (b) If s is size of the source and S is distant of source from the plane of the two slits, then for interference fringes to seen, the condition is s/S<λ/D As source slit is brought closer to double slit plane, S decreases, the interference pattern gets less and 	1
21.	less sharp. When the source is too close, the fringe separation remains fixed. Fig and showing current leads voltage in pure capacitive circuit	1/2
	If $V = V_0 \sin \omega t$ $q = CV = CV_0 \sin \omega t$ $\therefore I = \frac{dq}{dt} = \omega CV_0 \cos \omega t$ or $I = \omega CV_0 \sin (\omega t + \frac{\pi}{2})$	1 1/2

22.	(a) Since the capacitors are connected in parallel we have, $C = C_1 + C_2 + C_3$ $= (2+3+4) \times 10^{-12}$ $= 9 \times 10^{-12} = 9 \text{ pF}$ $q_1 = C_1 V$ $= 2 \times 10^{-12} \times 100$ $= 2 \times 10^{-10} \text{ C}$	1/2
	$q_2 = C_2V$ = $3 \times 10^{-12} \times 100$ = $3 \times 10^{-10}C$	1 1/2
	$q_3 = C_3V$ = $4 \times 10^{-12} \times 100$ (b) = $4 \times 10^{-10}C$	
	OR	
	(a)	
	E	
	(b) Yes. Electric potential is zero at all points on equatorial line of electric dipole ,while electric field is non zero. (or any correct example)	
23.	Diagram of full wave rectifier	1
24.	i/p and o/p wave forms Three elements of earth's magnetic field	$\frac{\frac{1}{2} + \frac{1}{2}}{1\frac{1}{2}}$
	At the poles	1/2
	OR definition – angle of dip	1
	(a) poles	1/2
	(b) equator	1/2
25.	Fringe width $\beta = \lambda D/d$	1
	$= 5 \times 10^{-4} \mathrm{m}$ SECTION C	1
26.	Definition – self inductance	1
	Derivation – energy stored in an inductor	2
27.	Cells in parallel – expression for emf and resistance	3
	OR	

	(a) constantan and manganin are used for making standard resistors	
	 (b) connections between resistors in a meter bridge made of thick copper strips (c) the balance point is obtained near the middle of the bridge wire in meter bridge experiments 	1 1 1
28.	(i) metal Q	1
	(ii)	
	$E = h\theta_0 = 6.63 \times 10^{-34} \times 6 \times 10^{14} = 3.97 \times 10^{-19} J$	1
	(iii)no change	1
29	A Repulsive MeV 0 Attractive D -100 C 1 2 3 4 r (fm)	2
	Marking regions	
30.	At the distance of nearest approach	1
	$\frac{k(ze)(2e)}{r_0} = 4.5~MeV = 4.5 \times 10^6 \times 1.6 \times 10^{-19} J$	2
	${ m r}_0 = rac{{ m k(ze)(2e)}}{4.5 imes 1.6 imes 10^{-13}}$	
	$=\frac{9\times 10^{9}\times (80)\times 2\times \left(1.6\times 10^{-19}\right)^{2}}{4.5\times 1.6\times 10^{-13}}=51.2\times 10^{-15}\mathrm{m}.$	
31.	 a) Faraday's law of electromagnetic induction- statement and mathematical expression (b)Deducing an expression for the emf induced in the rod with figure (c) expression for current induced in it. Or	2 2 1
	working of a step up transformer, with diagram. expression for the secondary to primary voltage in terms of the number of turns in the two coil.	1 ½ 2 ½
	any two sources of energy loss in a transformer	1

32.	(a) Gauss's law statement	1 1/2
	(b) the expression for electric field due to an infinitely long straight thin charged wire with diagram	2 ½
	Graph showing the variation of E with r	1
	OR	
	(a) Definition electric dipole moment.	1
	SI unit.	1
	(b) Diagrammatic representation of the position of dipole in stable and unstable equilibrium	1
	writing the expression for the torque acting on the dipole and potential energy of dipole in both the cases	2
33.	coherent sources of light -definition	1
	two conditions for sustained interference pattern.	1 2
	expression for the width of interference fringes(YDS) with diagram	
	OR	
	Lens maker formula derivation	
	Fig –	2
	Derivation	3